咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >A Geometric Proof of Fermat’s ... 收藏

A Geometric Proof of Fermat’s Little Theorem

A Geometric Proof of Fermat’s Little Theorem

作     者:Thomas Beatty Marc Barry Andrew Orsini 

作者机构:Florida Gulf Coast University Fort Myers USA 

出 版 物:《Advances in Pure Mathematics》 (理论数学进展(英文))

年 卷 期:2018年第8卷第1期

页      面:41-44页

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

主  题:Fermat Carmichael Number Group Permutation Burnside’s Lemma Action Invariant Set Orbit Stabilizer Coloring Pattern Prime Regular Polygon Cyclic Group 

摘      要:We present an intuitively satisfying geometric proof of Fermat s result for positive integers that for prime moduli p, provided p does not divide a. This is known as Fermat’s Little Theorem. The proof is novel in using the idea of colorings applied to regular polygons to establish a number-theoretic result. A lemma traditionally, if ambiguously, attributed to Burnside provides a critical enumeration step.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分