A Geometric Proof of Fermat’s Little Theorem
A Geometric Proof of Fermat’s Little Theorem作者机构:Florida Gulf Coast University Fort Myers USA
出 版 物:《Advances in Pure Mathematics》 (理论数学进展(英文))
年 卷 期:2018年第8卷第1期
页 面:41-44页
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
主 题:Fermat Carmichael Number Group Permutation Burnside’s Lemma Action Invariant Set Orbit Stabilizer Coloring Pattern Prime Regular Polygon Cyclic Group
摘 要:We present an intuitively satisfying geometric proof of Fermat s result for positive integers that for prime moduli p, provided p does not divide a. This is known as Fermat’s Little Theorem. The proof is novel in using the idea of colorings applied to regular polygons to establish a number-theoretic result. A lemma traditionally, if ambiguously, attributed to Burnside provides a critical enumeration step.