Mobility control of unmanned aerial vehicle as communication relay in airborne multi-user systems
Mobility control of unmanned aerial vehicle as communication relay in airborne multi-user systems作者机构:School of Electronics and Information Northwestern Polytechnical University
出 版 物:《Chinese Journal of Aeronautics》 (中国航空学报(英文版))
年 卷 期:2019年第32卷第6期
页 面:1520-1529页
核心收录:
学科分类:080904[工学-电磁场与微波技术] 0810[工学-信息与通信工程] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 080402[工学-测试计量技术及仪器] 0804[工学-仪器科学与技术] 082503[工学-航空宇航制造工程] 081001[工学-通信与信息系统] 0825[工学-航空宇航科学与技术]
基 金:supported by the National Natural Science Foundation of China (No. 61573285)
主 题:Channel estimation Gradient methods Motion control Optimization Relay Unmanned aerial vehicle Wireless networks
摘 要:In this paper, a model-based adaptive mobility control method for an Unmanned Aerial Vehicle(UAV) acting as a communication relay is presented, which is intended to improve the network performance in airborne multi-user systems. The mobility control problem is addressed by jointly considering unknown Radio Frequency(RF) channel parameters, unknown multi-user mobility, and non-available Angle of Arrival(AoA) information of the received signal. A Kalman filter and a least-square-based estimation algorithm are used to predict the future user positions and estimate the RF channel parameters between the users and the UAV, respectively. Two different relay application cases are considered: end-to-end and multi-user communications. A line search algorithm is proposed for the former, with its stability given and proven, whereas a simplified gradient-based algorithm is proposed for the latter to provide a target relay position at each decision time step, decreasing the two-dimensional search to a one-dimensional search. Simulation results show that the proposed mobility control algorithms can drive the UAV to reach or track the optimal relay position movement, as well as improving network performance. The proposed method reflects the properties of using different metrics as objective network performance functions.