Generalized Lorenz Equation Derived from Thermal Convection of Viscoelastic Fluids in a Loop
Generalized Lorenz Equation Derived from Thermal Convection of Viscoelastic Fluids in a Loop作者机构:Department of Engineering Mechanics Tsinghua University Beijing 100084
出 版 物:《Chinese Physics Letters》 (中国物理快报(英文版))
年 卷 期:2010年第27卷第3期
页 面:196-199页
核心收录:
学科分类:080704[工学-流体机械及工程] 07[理学] 080103[工学-流体力学] 08[工学] 0807[工学-动力工程及工程热物理] 070104[理学-应用数学] 0701[理学-数学] 0801[工学-力学(可授工学、理学学位)]
基 金:Supported by the National Natural Science Foundation of China under Grant No 10972117
主 题:Fluid dynamics Mathematical physics Statistical physics and nonlinear systems
摘 要:A new generalized Lorenz system is presented based on the thermal convection of Oldroyd-B fluids in a circular loop. Two non-dimensional parameters De1 (a measure of the fluid relaxation) and De2 (a measure of the fluid retardation) appear in the equation. Then we study this generalized Lorenz equation numerically and find that the values of De1 and De2 can greatly influence the behavior of the solution. The fluid relaxation De1 is found to precipitate the onset of periodic solution (limit cycle) in the system and impedes the onset of chaos while the fluid retardation (De2) tends to delay the onset of the periodic solution and precipitate the onset of chaos in the system.