AN ELEMENTARY CRITERION ON PARITY OF CLASS NUMBER OF CYCLIC NUMBER FIELD
AN ELEMENTARY CRITERION ON PARITY OF CLASS NUMBER OF CYCLIC NUMBER FIELD作者机构:University of Science and Technology of China Hefei
出 版 物:《Science in China,Ser.A》 (中国科学A辑(英文版))
年 卷 期:1982年第10期
页 面:1032-1041页
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
主 题:CLASS calculating parity elementary criterion totally elusion generating polynomial defining
摘 要:Let K be a subfield of cyclotomic field Q(ξPl) with odd degree, F be the group of cyclotomic unitsof K, and F+ be the group of totally positive cyclotomic units of K. By calculating dim F2 F+/F2, we getan elementary criterion of parity of class number of field K. From this, we proved that in the (cyclic)subfields of cyclotomic field Q(ξPl) (p1000) with odd degree n(3≤n≤19) there exist just 17 fields witheven class number.