Mechanical properties of wood flour/recycled-thermoplastic-blends composites
Mechanical properties of wood flour/recycled-thermoplastic-blends composites出 版 物:《北京林业大学学报》 (Journal of Beijing Forestry University)
年 卷 期:2006年第28卷第S2期
页 面:180-180页
核心收录:
学科分类:08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 080502[工学-材料学]
主 题:wood flour composites compatibilizer thermoplastic blends recycled plastics
摘 要:The mechanical properties of composites prepared from wood flour and thermoplastic blends were investigated. Thermoplastic mixtures of polypropylene (PP) and high-density polyethylene (HDPE) and polystyrene (PS), virgin or recycled, were mixed with wood flour in a high speed blender and then extruded by a specially designed twin/single screw extruder system to form wood-flour/thermoplastic-blends composites (WTBCs). Comparative studies were made to evaluate the effectiveness of the two modification methods of the thermoplastic blends, the one of the addition of maleic anhydride grafted styrene-ethylene-butylene-styrene block copolymer (SEBS-g-MAH) as compatibilizer and the other of blend grafting of maleic anhydride (MAH) using dicumyl peroxide (DCP) as initiator by reactive extrusion. The results showed that the impact properties of WTBCs using SEBS-g-MAH as compatilizer were better improved than that of the blend grafting. However, adverse results were observed on the tensile and flexural properties of the corresponding WTBCs. The mechanical properties of WTBCs prepared from recycled plastic blends were poorer to some extent than that from virgin plastic blends in general, especially in elongation break. The morphology of WTBCs breaking section was analyzed by scanning electron microscopy (SEM) and the results showed that a good interfacial adhesion between wood flour and polymer matrix was observed with both of the two modification methods. However, by blend grafting of adding DCP as initiator and MAH as monomer, a better interfacial bonding between wood and plastic matrix was obtained than that of the addition of SEBS-g-MAH. Blend grafting can be considered as a potential way of increasing the interfacial compatibility of different plastics and between plastic blends and wood.