一种DDMCN火焰图像特征提取的转炉炼钢碳含量实时预测方法
A real-time prediction method of carbon content in converter steelmaking based on DDMCN flame image feature extraction作者机构:昆明理工大学信息工程与自动化学院昆明650500 昆明理工大学云南省人工智能重点实验室昆明650500 云南昆钢电子信息科技有限公司昆明650500
出 版 物:《控制与决策》 (Control and Decision)
年 卷 期:2023年第38卷第10期
页 面:2795-2804页
核心收录:
学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:国家自然科学基金项目(61863018,62263016) 云南省科技厅应用基础研究项目(202001AT070038)
主 题:转炉炼钢 特征提取 纹理分析 复杂网络 高阶局部导数模式 彩色纹理
摘 要:转炉炼钢终点控制作为吹炼末期重要操作的关键是碳含量准确实时预测,而熔池中碳含量的氧化速率能够反映在炉口火焰纹理变化上,因此提取火焰纹理的准确特征是终点碳含量预测的关键,但是火焰纹理具有多方向多尺度不规则的特征描述难点.鉴于此,提出一种导数非线性映射方向加权多层复杂网络彩色纹理描述符,符合火焰不规则纹理的多尺度多方向特点.首先,将HSI空间下火焰图像映射至相位空间以增强空间位置关联信息;然后,基于复杂网络给出一种反映不同尺度顶点间连续变化的导数关系权重公式,结合方向信息构建炉口火焰图像的多尺度不规则方向加权彩色纹理复杂网络;最后,计算顶点方向加权度特征量化复杂网络拓扑连接模式,构建火焰彩色纹理特征,建立KNN回归模型预测终点碳含量.实验结果表明,所提出算法满足实际转炉炼钢吹炼过程实时性要求.