咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Prediction of PM2.5 Concentrat... 收藏
Prediction of PM2.5 Concentration Based on Recurrent Fuzzy N...

Prediction of PM2.5 Concentration Based on Recurrent Fuzzy Neural Network

作     者:Shanshan Zhou Wenjing Li Junfei Qiao 

作者单位:Faculty of Information TechnologyBeijing University of Technology Beijing Key Laboratory of Computational Intelligence and Intelligent System 

会议名称:《第36届中国控制会议》

主办单位:Dalian University of Technology;Systems Engineering Society of China (SESC);Technical Committee on Control Theory (TCCT), Chinese Association of Automation (CAA)

会议日期:2017年

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 081104[工学-模式识别与智能系统] 08[工学] 070602[理学-大气物理学与大气环境] 0706[理学-大气科学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:supported by the National Science Foundation of China under Grants 61225016,61533002,and 61603009 the China Postdoctoral Research Foundation under Grant 2015M570910 the Chao Yang District Postdoctoral Research Foundation under Grant 2015ZZ-6 the Basic Research Foundation Project of Beijing University of Technology under Grant 002000514315501 

关 键 词:PM2.5 prediction recurrent fuzzy neural network PLS adaptive learning rate 

摘      要:The prediction of PM2.5 is difficult because the variation of PM2.5 concentration is a nonlinear dynamic ***,a recurrent fuzzy neural network prediction method is proposed to predict the PM2.5 concentration in this ***,the partial least squares(PLS) algorithm is used to select key input variables as a preprocessing ***,a recurrent fuzzy neural network model is established and the gradient descent algorithm with an adaptive learning rate is used to train the neural *** results show that the recurrent neural network has better prediction performance and higher interpretability than fuzzy neural network(FNN) and radial-basis function(RBF) feed forward neural network.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分