Chaotic Particle Swarm Optimization Algorithm Parametric Identification of Bouc-Wen hysteresis Model for Piezoelectric Ceramic Actuator
作者单位:Key Laboratory for Intelligent Control & Decision of Complex Systems Beijing Institute of Technology School of Automation Beijing Institute of Technology
会议名称:《第25届中国控制与决策会议》
主办单位:IEEE;NE Univ;IEEE Ind Elect Chapter;IEEE Harbin Sect Control Syst Soc Chapter;Guizhou Univ;IEEE Control Syst Soc;Syst Engn Soc China;Chinese Assoc Artificial Intelligence;Chinese Assoc Automat;Tech Comm Control Theory;Chinese Assoc Aeronaut;Automat Control Soc;Chinese Assoc Syst Simulat;Simulat Methods & Modeling Soc;Intelligent Control & Management Soc
会议日期:2013年
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 081101[工学-控制理论与控制工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:supported by National Nature Science Foundation under Grant (10872030) Beijing Natural Science Foundation 4122066
关 键 词:Chaotic Particle Swarm Optimization Bouc-Wen Identification Piezoelectric Ceramic Actuator
摘 要:A chaotic particle swarm optimization (CPSO) algorithm is proposed by introducing chaos state into the original Particle Swarm Optimization (PSO) which aims to solving the flaws of easy plunging into local optimum and losing search ability in the last period for the fast particle velocity decrease. CPSO algorithm takes advantage of the ergodicity, randomicity, and regularity of chaos to make chaotic searching for the global extremun at the same time with the particle swarm optimization. This algorithm synthesizes the high efficiency of global optimization of PSO algorithm and the ergodicity and randomicity of local search of chaotic algorithm. This paper utilizes aforementioned algorithm to identify the Bouc-Wen hysteresis model for piezoelectric ceramic actuators (PCA). The experimental results show that the model identified by CPSO algorithm has better performance than that by PSO algorithm.