咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Tuning the intermolecular inte... 收藏

Tuning the intermolecular interaction of A_(2)-A_(1)-D-A_(1)-A_(2) type non-fullerene acceptors by substituent engineering for organic solar cells with ultrahigh V_(OC) of ~1.2 V

调节 2 一 1 -D-A 的分子间的相互作用由为器官的太阳能电池与的取代者工程的 1 2 个类型 non-fullerene 领受人超离频 ~ 的 V OC 1.2 V

作     者:Xiaochen Wang Ailing Tang Jing Yang Mengzhen Du Jianfeng Li Gongqiang Li Qiang Guo Erjun Zhou Xiaochen Wang;Ailing Tang;Jing Yang;Mengzhen Du;Jianfeng Li;Gongqiang Li;Qiang Guo;Erjun Zhou

作者机构:CAS Key Laboratory of Nanosystem and Hierarchical FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing 100190China Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing 100049China Key Laboratory of Flexible Electronic&Institute of Advanced MaterialsJiangsu National Synergistic Innovation Center for Advanced MaterialsNanjing Tech UniversityNanjing 211816China Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou 450003China 

出 版 物:《Science China Chemistry》 (中国科学(化学英文版))

年 卷 期:2020年第63卷第11期

页      面:1666-1674页

核心收录:

学科分类:08[工学] 080502[工学-材料学] 0805[工学-材料科学与工程(可授工学、理学学位)] 

基  金:This work was supported by the National Natural Science Foundation of China(51773046,51673048,21602040) the Strategic Priority Research Program of Chinese Academy of Sciences(XDB36000000) the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(QYZDBSSW-SLH033) the National Key Research and Development Program of China(2017YFA0206600) 

主  题:benzotriazole dicyanomethylene rhodanine end group engineering intermolecular interaction non-fullerene acceptor 

摘      要:For non-fullerene acceptors(NFAs)with linear A_(2)-A_(1)-D-A_(1)-A_(2) backbone,there are three kinds of possible intermolecular interaction,A_(1)-A_(1),A_(1)-A_(2) and A_(2)-A_(2) ***,it is a huge challenge to control this interaction and investigate the effect of intermolecular stacking model on the photovoltaic ***,we adopt a feasible strategy,by utilizing different substituent groups on terminal A2 unit of dicyanomethylene rhodanine(RCN),to modulate this stacking *** to theoretical calculation results,the molecule BTA3 with ethyl substituent packs via heterogeneous interaction between A_(2) and A_(1) unit in neighboring ***,the benzyl group can effectively transform the aggregation of BTA5 into homogeneous packing of A_(2)-A_(2) model,which might be driven by the strong interaction between benzyl and A1(benzotriazole)***,different with benzyl,phenyl end group impedes the intermolecular interaction of BTA4 due to the large steric *** using a BTA-based D-π-A polymer J52-F as donor according to“Same-A-Strategy,BTA3-5 could achieve ultrahigh open-circuit voltage(VOC)of 1.17–1.21 ***,BTA5 with benzyl groups realized an improved power conversion efficiency(PCE)of 11.27%,obviously higher than that of BTA3(PCE=9.04%)and BTA4(PCE=5.61%).It is also worth noting that the same trend can be found when using other four classic p-type polymers of P3HT,PTB7,PTB7-Th and *** work not only investigates the intermolecular interaction of A_(2)-A_(1)-D-A_(1)-A_(2) type NFAs for the first time,but also provides a straightforward and universal method to change the interaction model and improve the photovoltaic performance.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分