Modal Parameters Identification of A Real Offshore Platform From the Response Excited by Natural Ice Loading
Modal Parameters Identification of A Real Offshore Platform From the Response Excited by Natural Ice Loading作者机构:ESI North AmericaFarmington HillsMI 48334USA Shandong Provincial Key Lab of Ocean EngineeringOcean University of ChinaQingdao 266100China
出 版 物:《China Ocean Engineering》 (中国海洋工程(英文版))
年 卷 期:2020年第34卷第4期
页 面:558-570页
核心收录:
学科分类:081505[工学-港口、海岸及近海工程] 0908[农学-水产] 08[工学] 0710[理学-生物学] 0830[工学-环境科学与工程(可授工学、理学、农学学位)] 0707[理学-海洋科学] 0807[工学-动力工程及工程热物理] 0815[工学-水利工程] 0824[工学-船舶与海洋工程] 0802[工学-机械工程] 0814[工学-土木工程] 082401[工学-船舶与海洋结构物设计制造] 0801[工学-力学(可授工学、理学学位)]
基 金:financially supported by the National Science Fund for Distinguished Young Scholars(Grant No.51625902) the Major Scientific and Technological Innovation Project of Shandong Province(Grant No.2019JZZY010820) the National Key Research and Development Program of China(Grant No.2019YFC0312404) the National Natural Science Foundation of China(Grant No.51879249) the Taishan Scholars Program of Shandong Province(Grant No.TS201511016)
主 题:modal identification experimental modal analysis offshore platform ambient excitation natural ice loading comparative study
摘 要:This paper investigates the possibility of utilizing response from natural ice loading for modal parameter identification of real offshore *** test platform is the JZ20-2 MUQ jacket platform located in the Liaodong Bay,China.A field experiment is carried out in winter season,as the platform is excited by floating *** feasibility is demonstrated by the acceleration response of two different *** the SSI-data method,the modal frequencies and damping ratios of four structural modes can be successfully identified from both *** estimated information from both segments is almost identical,which demonstrates that the modal identification is ***,by taking the Jacket platform as a benchmark,the numerical performance of five popular time-domain EMA methods is systematically compared from different *** comparisons are categorized as:(1)stochastic methods versus deterministic methods;(2)high-order methods versus low-order methods;(3)data-driven versus covariance-driven stochastic subspace identification methods.