咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Reduction of False Rejection i... 收藏

Reduction of False Rejection in an Authentication System by Fingerprint with Deep Neural Networks

Reduction of False Rejection in an Authentication System by Fingerprint with Deep Neural Networks

作     者:Stéphane Kouamo Claude Tangha Olaf Kouamo 

作者机构:Department of Computer Science University of Yaounde I Yaounde Cameroon Department of Mathematics and Statistics Université Denis Didérot (Paris VII) Paris France 

出 版 物:《Journal of Software Engineering and Applications》 (软件工程与应用(英文))

年 卷 期:2020年第13卷第1期

页      面:1-13页

学科分类:0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 

主  题:Authentication Fingerprint False Rejection Neural Networks Pattern Recognition Deep Learning 

摘      要:Faultless authentication of individuals by fingerprints results in high false rejections rate for rigorously built systems. Indeed, the authors prefer that the system erroneously reject a pattern when it does not meet a number of predetermined correspondence criteria. In this work, after discussing existing techniques, we propose a new algorithm to reduce the false rejection rate during the authentication-using fingerprint. This algorithm extracts the minutiae of the fingerprint with their relative orientations and classifies them according to the different classes already established;then, make the correspondence between two templates by simple probabilities calculations from a deep neural network. The merging of these operations provides very promising results both on the NIST4 international data reference and on the SOCFing database.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分