A selective view of stochastic inference and mod-eling problems in nanoscale biophysics
A selective view of stochastic inference and modeling problems in nanoscale biophysics作者机构:Department of StatisticsHarvard UniversityCambridgeMA 02138USA
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2009年第52卷第6期
页 面:1181-1211页
核心收录:
学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学]
基 金:supported by the United States National Science Fundation Career Award (Grant No. DMS-0449204)
主 题:likelihood analysis Bayesian data augmentation semi-and non-parametric inference single-molecule experiment subdiffusion generalized Langevin equation fractional Brownian motion stochastic network enzymatic reaction
摘 要:Advances in nanotechnology enable scientists for the first time to study biological pro-cesses on a nanoscale molecule-by-molecule *** also raise challenges and opportunities for statisticians and applied *** exemplify the stochastic inference and modeling problems in the field,this paper discusses a few selected cases,ranging from likelihood inference,Bayesian data augmentation,and semi-and non-parametric inference of nanometric biochemical systems to the uti-lization of stochastic integro-differential equations and stochastic networks to model single-molecule biophysical *** discuss the statistical and probabilistic issues as well as the biophysical motivation and physical meaning behind the problems,emphasizing the analysis and modeling of real experimental data.