Optimization of the heat treatment of additively manufactured Ni-base superalloy IN718
Optimization of the heat treatment of additively manufactured Ni-base superalloy IN718作者机构:Department of Materials Science&EngineeringInstitute IFriedrich-Alexander-Universitat Erlangen-NürnbergErlangen 91058Germany Lufthansa Technik AGHamburg 22335Germany
出 版 物:《International Journal of Minerals,Metallurgy and Materials》 (矿物冶金与材料学报(英文版))
年 卷 期:2020年第27卷第5期
页 面:640-648页
核心收录:
学科分类:080503[工学-材料加工工程] 08[工学] 080502[工学-材料学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0802[工学-机械工程] 080201[工学-机械制造及其自动化]
主 题:Ni-base superalloy selective laser melting strengthening mechanism powder bed fusion microstructure
摘 要:Additive manufacturing(AM) of Ni-base superalloy components can lead to a significant reduction of weight in aerospace applications. AM of IN718 by selective laser melting results in a very fine dendritic microstructure with a high dislocation density due to the fast solidification process. The complex phase composition of this alloy, with three different types of precipitates and high residual stresses, necessitates adjustment of the conventional heat treatment for AM parts. To find an optimized heat treatment, the microstructures and mechanical properties of differently solution heat-treated samples were investigated by transmission and scanning electron microscopy, including electron backscatter diffraction, and compression tests. After a solution heat treatment(SHT), the Nb-rich Laves phase dissolves and the dislocation density is reduced, which eliminates the dendritic substructure. SHT at 930 or 954°C leads to the precipitation of the δ-phase, which reduces the volume fraction of the strengthening γ′-and γ′′-phases formed during the subsequent two stage aging treatment. With a higher SHT temperature of 1000°C, where no δ-phase is precipitated, higher γ′ and γ′′ volume fractions are achieved, which results in the optimum strength of all of the solution heat treated conditions.