咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Tight-binding study of quantum... 收藏

Tight-binding study of quantum transport in nanoscale GaAs Schottky MOSFET

Tight-binding study of quantum transport in nanoscale GaAs Schottky MOSFET

作     者:Zahra Ahangari Morteza Fathipour 

作者机构:Department of Electrical EngineeringScience and Research BranchIslamic Azad University School of Electrical and Computer EngineeringUniversity of Tehran 

出 版 物:《Chinese Physics B》 (中国物理B(英文版))

年 卷 期:2013年第22卷第9期

页      面:634-639页

核心收录:

学科分类:080903[工学-微电子学与固体电子学] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 080501[工学-材料物理与化学] 0805[工学-材料科学与工程(可授工学、理学学位)] 080502[工学-材料学] 

主  题:band structure quantum confinement effects resonant tunneling Schottky MOSFET 

摘      要:This paper explores the band structure effect to elucidate the feasibility of an ultra-scaled GaAs Schottky MOSFET (SBFET) in a nanoscale regime. We have employed a 20-band sp3dSs* tight-binding (TB) approach to compute E - K dis- persion. The considerable difference between the extracted effective masses from the TB approach and bulk values implies that quantum confinement affects the device performance. Beside high injection velocity, the ultra-scaled GaAs SBFET suffers from a low conduction band DOS in the F valley that results in serious degradation of the gate capacitance. Quan- tum confinement also results in an increment of the effective Schottky barrier height (SBH). Enhanced Schottky barriers form a double barrier potential well along the channel that leads to resonant tunneling and alters the normal operation of the SBFET. Major factors that may lead to resonant tunneling are investigated. Resonant tunneling occurs at low temperatures and low drain voltages, and gradually diminishes as the channel thickness and the gate length scale down. Accordingly, the GaAs (100) SBFET has poor ballistic performance in nanoscale regime.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分