NLS equation wronskians Peregrine breather rogue waves
NLS equation wronskians Peregrine breather rogue waves作者机构:Institut de Math6matiques de Bourgogne 9 Av. Alain Savary BP 47870 21078 DIJON Cedex France ASD IMCCE-CNRS UMR8028 Observatoire de Paris UPMC 77 Av. Denfert-Rochereau Paris 75014 France
出 版 物:《Communications in Theoretical Physics》 (理论物理通讯(英文版))
年 卷 期:2016年第65卷第2期
页 面:136-144页
核心收录:
学科分类:07[理学] 0704[理学-天文学] 0701[理学-数学] 0702[理学-物理学] 070101[理学-基础数学]
主 题:Twenty Parameters Families of Solutions to the NLS Equation and the Eleventh Peregrine Breather
摘 要:The Peregrine breather of order eleven(P_(11) breather) solution to the focusing one-dimensional nonlinear Schrdinger equation(NLS) is explicitly constructed here. Deformations of the Peregrine breather of order 11 with 20 real parameters solutions to the NLS equation are also given: when all parameters are equal to 0 we recover the famous P_(11) breather. We obtain new families of quasi-rational solutions to the NLS equation in terms of explicit quotients of polynomials of degree 132 in x and t by a product of an exponential depending on t. We study these solutions by giving patterns of their modulus in the(x; t) plane, in function of the different parameters.