融合GF-MSRCR和暗通道先验的图像去雾
Image dehazing based on GF-MSRCR and dark channel prior作者机构:辽宁工程技术大学软件学院
出 版 物:《中国图象图形学报》 (Journal of Image and Graphics)
年 卷 期:2019年第24卷第11期
页 面:1893-1905页
核心收录:
学科分类:08[工学] 080203[工学-机械设计及理论] 0802[工学-机械工程]
基 金:国家自然科学基金项目(61172144) 辽宁省教育厅基金项目(LJ2017ZL003)~~
主 题:加权四叉树 GF-MSRCR 暗通道先验 图像融合 变差函数 中值滤波
摘 要:目的针对雾天图像高亮和雾浓区域中容易出现场景透射率值求取不准确,导致复原后的图像细节丢失、出现光晕现象、对比度和色彩难以满足人眼的视觉特性等问题,提出了一种融合引导滤波优化的色彩恢复多尺度视网膜算法(GF-MSRCR)和暗通道先验的图像去雾算法。方法首先利用加权四叉树方法从最小通道图中快速搜索全局大气光值,再从图像增强角度应用GF-MSRCR算法初步估计场景透射率值,依据暗通道先验原理对最小通道图进行二次估测,根据两次求取结果按一定比例进行像素级图像融合,得到场景透射率估计值;利用变差函数修正估计值,经中值滤波进一步优化得到场景透射率的精确值,最后通过大气散射模型恢复雾天图像,调整对比度和恢复颜色后,得到了轮廓完整且细节清晰的无雾图像。结果理论分析和实验结果表明,经本文算法去雾处理后的图像信息熵、对比度、平均梯度、结构相似性分别平均提升了7. 87%、21. 95%、47. 73%和15. 58%,同时运行时间缩短了53. 22%,对近景、含小部分天空区域、含大片天空区域和含白色物体场景的多种类型雾天图像显示出较好的复原效果。结论融合GF-MSRCR和暗通道先验的图像去雾算法能快速有效保留图像的细节信息、消除光晕,满足了人眼的视觉特性,具有一定的实用性以及普适性。