基于语义信息和边缘一致性的鲁棒SLAM算法
Robust SLAM Algorithm Based on Semantic Information and Edge Consistency作者机构:火箭军工程大学控制工程系陕西西安710025 成都信息工程大学控制工程学院四川成都610225
出 版 物:《机器人》 (Robot)
年 卷 期:2019年第41卷第6期
页 面:751-760页
核心收录:
学科分类:080202[工学-机械电子工程] 08[工学] 0804[工学-仪器科学与技术] 0802[工学-机械工程]
主 题:同时定位与地图创建 语义信息 动态环境 距离变换 边缘一致性
摘 要:为解决动态环境中视觉定位精度下降、鲁棒性不足的问题,并改善构建的环境地图,提出一种基于语义信息和边缘一致性的鲁棒同时定位与地图创建(SLAM)算法.首先使用YOLOv3算法获取环境语义信息,得到初步的图像语义动静态分割.而后使用基于图像中边缘的距离变换误差和光度误差的一致性评估,进一步对图像的动静态区域进行细分,并利用连通区域分析和漏洞修补算法修正动态区域.使用图像非动态区域的特征点进行特征匹配,利用非线性优化算法最小化特征点的重投影误差,得到优化的相机位姿.利用特征点共视性和动静态区域面积进行绘图关键帧的选取,从而构建不包含动态物体信息的静态环境地图.公开数据集中高动态环境的实验表明,本文算法能够准确地区分图像中的动静态信息,完成动态环境下的精确定位与地图构建任务.并且本文算法在纯静态环境下不存在定位精度下降的情况.