咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Distributionally robust optimi... 收藏

Distributionally robust optimization model of active distribution network considering uncertainties of source and load

Distributionally robust optimization model of active distribution network considering uncertainties of source and load

作     者:Lei DONG Jia LI Tianjiao PU Naishi CHEN 

作者机构:Power System Research InstituteNorth China Electric Power UniversityBeijing 102206China China Electric Power Research InstituteBeijing 100192China 

出 版 物:《Journal of Modern Power Systems and Clean Energy》 (现代电力系统与清洁能源学报(英文))

年 卷 期:2019年第7卷第6期

页      面:1585-1595页

核心收录:

学科分类:080802[工学-电力系统及其自动化] 0808[工学-电气工程] 08[工学] 

基  金:supported by Natural Science Foundation of Beijing Municipality(No.3161002) National Key R&D Program(No.2017YFB0903300) 

主  题:Active distribution network(ADN) Source-load uncertainty Two-stage distributionally robust optimization Ambiguity set Generalized linear decision rule 

摘      要:To ensure the safety and reliability of the distribution network and adapt to the uncertain development of renewable energy sources and loads,a two-stage distributionally robust optimization model is proposed for the active distribution network(ADN)optimization problem considering the uncertainties of the source and load in this *** establishing an ambiguity set to capture the uncertainties of the photovoltaic(PV)power,wind power and load,the piecewise-linear function and auxiliary parameters are introduced to help characterize the probability distribution of uncertain *** optimization goal of the model is to minimize the total expected cost under the worst-case distribution in the ambiguity *** first-stage expected cost is obtained based on the predicted value of the uncertainty *** second-stage expected cost is based on the actual value of the uncertainty variable to solve the first-stage *** generalized linear decision rule approximates the two-stage optimization model,and the affine function is introduced to provide a closer approximation to the second-stage optimization ***,the improved IEEE 33-node and IEEE 118-node systems are simulated and analyzed with deterministic methods,stochastic programming,and robust optimization methods to verify the feasibility and superiority of the proposed model and algorithm.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分