基于子团规模的社团划分算法与地理位置
Partition Algorithm Based on the Size of Sub-community and Geography作者机构:东北大学信息科学与工程学院辽宁沈阳110819
出 版 物:《东北大学学报(自然科学版)》 (Journal of Northeastern University(Natural Science))
年 卷 期:2012年第33卷第11期
页 面:1567-1570页
核心收录:
学科分类:080503[工学-材料加工工程] 08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0802[工学-机械工程] 080201[工学-机械制造及其自动化]
主 题:复杂网络 社团划分 CLCNM 前缀相似度 地理位置
摘 要:针对以往社团划分算法中存在的子团规模过大的问题,在CNM算法的基础上重新定义子团规模,提出了CLCNM社团划分算法.社团划分结果表明,改进后的算法在子团数量和模块度方面要优于CNM算法.在此基础上,研究社团划分与地理位置间的关系,提出地址前缀相似度的概念,子团地址前缀相似度越大,说明社团划分后的地理效应越明显.CLCNM社团划分结果表明:IPv6网络子团具有明显的地理效应,即子团中节点分布在相邻的地理位置.这一结论可对网络拓扑的再部署提供借鉴性意见.