咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >One Step Forward, Two Steps Ba... 收藏

One Step Forward, Two Steps Back: Biconvergence of Washed Harmonic Series

One Step Forward, Two Steps Back: Biconvergence of Washed Harmonic Series

作     者:Christopher M. Davis David G. Taylor 

作者机构:Department of Mathematics George Mason University Fairfax USA MCSP Department Roanoke College Salem USA 

出 版 物:《Advances in Pure Mathematics》 (理论数学进展(英文))

年 卷 期:2013年第3卷第3期

页      面:309-316页

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

主  题:Harmonic Series Biconvergence Non-Integer Series 

摘      要:We examine variations of the harmonic series by grouping terms into “washings that alternate sign with the number of terms in a washing growing exponentially with respect to a fixed base. The bases x = 1 and x = ∞ correspond to the alternating harmonic series and the usual harmonic series;we first consider other positive integral bases and further we consider positive real number bases with a unique way to make sense of adding a non-integral number of terms together. In both cases, we prove a remarkable result regarding the difference between the upper and lower convergent values of the series, and give some analysis of this behavior.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分