Stability of hypersurface sections of quadric threefolds
Stability of hypersurface sections of quadric threefolds作者机构:Department of Mathematical Sciences
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2015年第58卷第3期
页 面:479-486页
核心收录:
学科分类:07[理学] 08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 080502[工学-材料学] 0701[理学-数学] 070101[理学-基础数学]
基 金:supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Korea government(MSIP)(Grant No.2013006431) the National Research Foundation of Korea funded by the Korea government(MSIP)(Grant No.2013042157)
主 题:quadric threefold hypersurface section stability geometric invariant theory
摘 要:Let S be a complete intersection of a smooth quadric 3-fold Q and a hypersurface of degree d in *** analyze GIT stability of S with respect to the natural G=SO(5,C)-*** prove that if d 4 and S has at worst semi-log canonical singularities then S is ***,we prove that if d 3 and S has at worst semi-log canonical singularities then S is G-semistable.