咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Monitoring localized corrosion... 收藏

Monitoring localized corrosion of Inconel 82 weld overlay on 304L SS weld by electrochemical noise

作     者:Girija Suresh Hemant Kumar 

作者机构:Indira Gandhi Centre for Atomic Research Kalpakkam Tamilnadu 603102 India. 

出 版 物:《Materials Engineering Research》 (材料工程研究(英文))

年 卷 期:2019年第1卷第2期

页      面:45-55页

学科分类:08[工学] 

主  题:Inconel 82 weld overlay 304L SS weld electrochemical noise localized corrosion wavelet analysis 

摘      要:The manuscript presents the results from the electrochemical noise (EN) monitoring of Inconel 82 weld overlay on Type 304L stainless steel (SS) weld in 0.01M FeCl3. The microstructure of the weld overlay obtained from optical and scanning electron microscopy (SEM) showed an austenite structure, containing equiaxed dendrites and secondary phases at the interdendritic region. Energy dispersive spectroscopy (EDS) attached to SEM revealed the secondary phases to be Nb rich Laves phase. The electrochemical potential noise was monitored using a three identical electrode configuration. The acquired signals were detrended, and wavelet analysis was employed to encode useful information from the noise transients. Visual examination of the potential noise-time record contained distinct high amplitude transients typical of localized corrosion attack. The energy distribution plots (EDP) of the potential noise derived from wavelet analysis depicted maximum relative energy on D6-D8 crystals, which represent large time scale events such as those occurring from localized attacks. Also, repassivation events too could be divulged from the potential EDP. The micrographs of the post electrochemical noise experimented specimens revealed the occurrence of localized attacks along the interdendritic region and none inside the dendritic cores. The presence of secondary phases along the interdendritic regions was found to be detrimental in chloride medium, imparting inferior localized corrosion resistance to the weld overlay.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分