Huge metastable axial strain in ultrathin heteroepitaxial vertically aligned nanowires
Huge metastable axial strain in ultrathin heteroepitaxial vertically aligned nanowires作者机构:Sorbonne Universites UPMC Institut des NonoSciences de Paris 4 place Jussieu Paris 75005 France CNRS UMR7588 Institut des NanoSciences de Paris 4 place Jussieu Paris 75005 France Synchrotron Soleil L'Orme des Merisiers Saint-Aubin BP 48 91192 Gif-sur-Yvette Cedex France Universite Paris Diderot Sorbonne Paris Cite MPO UMR 7162 CNRS Batiment Condorcet Case courrier 7021 75205 Paris Cedex 13 France Universite de Versailles Saint-Quentin en Yvelines 55 Av. de Paris Versailles 78035 France
出 版 物:《Nano Research》 (纳米研究(英文版))
年 卷 期:2015年第8卷第6期
页 面:1964-1974页
核心收录:
学科分类:080903[工学-微电子学与固体电子学] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 081402[工学-结构工程] 081304[工学-建筑技术科学] 080501[工学-材料物理与化学] 0805[工学-材料科学与工程(可授工学、理学学位)] 080502[工学-材料学] 0813[工学-建筑学] 0814[工学-土木工程]
基 金:support from Agence Nationale de la Recherche
主 题:self-assembly heteroepitaxy nanowires strain
摘 要:Strain engineering is a powerful tool to tailor the physical properties of materials coherently stacked in an epitaxial heterostructure. Such an approach, applied to the mature field of planar heteroepitaxy, has yielded a variety of new phenomena and devices. Recently, heteroepitaxial vertically aligned nanocomposites have emerged as alternatives to planar structures. Owing to the peculiar geometry of such nanoarchitectures, efficient strain control can be achieved, opening the way to novel functionalities. In this paper, we report a very large tensile axial strain in epitaxial transition metal nanowires embedded in an oxide matrix. We show that axial strains in excess of 1.5% can be sustained over a large thickness (a few hundred nanometers) in epitaxial nanowires having ultrasmall diameters (-3-6 nm). The axial strain depends on the diameter of the nanowires, reflecting its epitaxial nature and the balance of interface and elastic energies. Furthermore, it is experimentally shown that such strain is metastable, in agreement with the calculations performed in the framework of the Frenkel-Kontorova model. The diameter dependence and metastability provide effective ways to control the strain, an appealing feature for the design of functional nanoarchitectures.