咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Probabilistic load curtailment... 收藏

Probabilistic load curtailment estimation using posterior probability model and twin support vector machine

Probabilistic load curtailment estimation using posterior probability model and twin support vector machine

作     者:Rozhin ESKANDARPOUR Amin KHODAEI 

作者机构:Department of Electrical and Computer EngineeringUniversity of DenverDenverCO 80208USA 

出 版 物:《Journal of Modern Power Systems and Clean Energy》 (现代电力系统与清洁能源学报(英文))

年 卷 期:2019年第7卷第4期

页      面:665-675页

核心收录:

学科分类:080802[工学-电力系统及其自动化] 0808[工学-电气工程] 08[工学] 

主  题:Hurricanes Machine learning Power system resilience Predictive analytics 

摘      要:Estimating the potential load curtailments as a result of hurricane is of great significance in improving the paper proposes a three-step sequential method in identifying such load curtailments prior to *** the first step,a twin support vector machine(TWSVM)model is trained on path/intensity information of previous hurricanes to enable a deterministic outage state assessment of the grid components in response to upcoming *** TWSVM model is specifically used as it is suitable for handling imbalanced *** the second step,a posterior probability sigmoid model is trained on the obtained results to convert the deterministic results into probabilistic outage *** outage states enable the formation of probability-weighted contingency ***,the obtained component outages are integrated into a load curtailment estimation model to determine the expected results,tested on the standard IEEE 118-bus system and based on synthetic datasets,illustrate the high accuracy emergency response and the recovery of power *** potential load curtailments in power *** simulation of the proposed method.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分