Active splitting strategy searching approach based on MISOCP with consideration of power island stability
Active splitting strategy searching approach based on MISOCP with consideration of power island stability作者机构:Department of Electrical EngineeringTsinghua UniversityBeijing100084China Department of Cardiothoracic SurgeryStanford UniversityStanfordUSA
出 版 物:《Journal of Modern Power Systems and Clean Energy》 (现代电力系统与清洁能源学报(英文))
年 卷 期:2019年第7卷第3期
页 面:475-490页
核心收录:
学科分类:080802[工学-电力系统及其自动化] 0808[工学-电气工程] 08[工学]
主 题:Splitting strategy searching(SSS) Mixed-integer second-order cone programming(MISOCP) Controlled islanding Static stability margin Transient stability Power system
摘 要:Active splitting control utilizes real-time decision and system-level splitting to prevent cascading blackouts and to maintain power supply under severe disturbances. Splitting strategy searching(SSS) is one of the most crucial issues in active splitting control for deciding‘‘where to split’’. SSS determines the splitting surface in real time to properly divide the asynchronous generators into isolated islands with an optimal control effect. In this paper, an SSS approach that focuses on island stability is presented. The proposed SSS approach is designed to ensure a rational stability margin and regulation ability on each island during and after the transient process of system splitting. This method includes the active/reactive power flow feasibility constraints and voltage/angle stability constraints in the steady state as well as the frequencyresponse capability constraints in the transient process. By considering the island stability constraints in the SSS, the proposed approach can avoid the splitting strategies with poor stability performance. Therefore, the major advantage of the proposed approach is that it can ensure better island static and transient stability during and after the splitting control. In addition, the entire model is formulated as a mixed-integer second-order cone programming(MISOCP)model. Thus, it can be rapidly solved by using commercial optimization solvers. Numerical simulations of a realistic provincial power system in central China demonstrate thevalidity of the proposed approach and the necessity of considering the island stability issues.