L^1-Poincaré and Sobolev inequalities for differential forms in Euclidean spaces Dedicated to Professor Jean-Yves Chemin on the Occasion of His 60th Birthday
L^1-Poincaré and Sobolev inequalities for differential forms in Euclidean spaces Dedicated to Professor Jean-Yves Chemin on the Occasion of His 60th Birthday作者机构:Dipartimento di Matematica Università di Bologna Laboratoire de Mathématiques d'Orsay Université Paris-Sud CNRSUniversité Paris-Saclay
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2019年第62卷第6期
页 面:1029-1040页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:supported by Funds for Selected Research Topics from the University of Bologna MAnET Marie Curie Initial Training Network GNAMPA (Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica "F. Severi"), Italy PRIN (Progetti di Ricerca di Rilevante Interesse Nazionale) of the MIUR (Ministero dell’Istruzione dell’Università e della Ricerca), Italy supported by MAnET Marie Curie Initial Training Network, Agence Nationale de la Recherche (Grant Nos. ANR-10-BLAN 116-01 GGAA and ANR-15-CE40-0018 SRGI) the hospitality of Isaac Newton Institute, of EPSRC (Engineering and Physical Sciences Research Council) (Grant No. EP/K032208/1) and Simons Foundation
主 题:differential forms Sobolev-Poincaré inequalities homotopy formula
摘 要:In this paper, we prove Poincaré and Sobolev inequalities for differential forms in L^1(R^n). The singular integral estimates that it is possible to use for L^p, p 1, are replaced here with inequalities which go back to Bourgain and Brezis(2007).