咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Dynamics of traveling wave sol... 收藏

Dynamics of traveling wave solutions to a highly nonlinear Fujimoto–Watanabe equation

Dynamics of traveling wave solutions to a highly nonlinear Fujimoto–Watanabe equation

作     者:Li-Juan Shi Zhen-Shu Wen 师利娟;温振庶

作者机构:Fujian Province University Key Laboratory of Computational Science School of Mathematical Sciences Huaqiao University 

出 版 物:《Chinese Physics B》 (中国物理B(英文版))

年 卷 期:2019年第28卷第4期

页      面:51-55页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:Project supported by the National Natural Science Foundation of China(Grant Nos.11701191 and 11871232) the Program for Innovative Research Team in Science and Technology in University of Fujian Province,Quanzhou High-Level Talents Support Plan(Grant No.2017ZT012) the Subsidized Project for Cultivating Postgraduates’ Innovative Ability in Scientific Research of Huaqiao University 

主  题:highly nonlinear Fujimoto–Watanabe equation dynamics traveling wave solutions bifurcations 

摘      要:In this work, we apply the bifurcation method of dynamical systems to investigate the underlying complex dynamics of traveling wave solutions to a highly nonlinear Fujimoto–Watanabe equation. We identify all bifurcation conditions and phase portraits of the system in different regions of the three-dimensional parametric space, from which we present the sufficient conditions to guarantee the existence of traveling wave solutions including solitary wave solutions, periodic wave solutions, kink-like(antikink-like) wave solutions, and compactons. Furthermore, we obtain their exact expressions and simulations, which can help us understand the underlying physical behaviors of traveling wave solutions to the equation.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分