Antioxidant and anti-caspase 3 effect of chitosan-Pinus merkusii extract nanoparticle against lead acetate-induced testicular toxicity in rat
作者机构:Department of PharmacologyFaculty of Veterinary MedicineAirlangga UniversitySurabayaIndonesia Department of HistologyFaculty of Veterinary MedicineAirlangga UniversitySurabayaIndonesia Department of Pharmacy BiologyFaculty of PharmacyHang Tuah UniversitySurabayaIndonesia Department of Conservative DentistryFaculty of DentistryAirlangga UniversitySurabayaIndonesia Department of MicrobiologyStudy Program of Environmental HealthPolytechnic of HealthSurabayaIndonesia
出 版 物:《Asian pacific Journal of Reproduction》 (亚太生殖杂志(英文版))
年 卷 期:2019年第8卷第1期
页 面:13-19页
学科分类:1002[医学-临床医学] 100214[医学-肿瘤学] 10[医学]
基 金:Universitas Airlangga UNAIR
主 题:Chitosan-Pinus merkusii nanoparticle Lead acetate Antioxidant Caspase 3
摘 要:Objective: To investigate the antioxidant and anti-caspase 3 effect of chitosan-Pinus merkusii extract nanoparticle on lead acetate-induced toxicity in rat testis. Methods: Chitosan-Pinus merkusii nanoparticles were identified by dynamic light scattering and scanning electron microscope. The male rats were divided into control group (rats were given with distilled water);lead acetate group [rats were injected with lead acetate 20 mg/kg body weight (BW) i.p.], and the treatment group (rats were given the chitosan-Pinus merkusii nanoparticle 150 mg;300 mg;600 mg/kg BW orally and were injected with lead acetate 20 mg/kg BW). The testis tissues were collected to evaluate the malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), histological evaluations of testis damage, and the caspase 3 mRNA expression was measured by reverse transcription-polymerase chain reaction. Results: The dynamic light scattering showed that the size of chitosan-Pinus merkusii nanoparticle was (530.2±38.2) nm. The scanning electron microscope images of the chitosan-Pinus merkusii nanoparticles showed an irregular shape, and the morphology surface showed the rough surface. The treatment with lead acetate resulted in significantly increasing MDA level and caspase 3 mRNA expression, and significantly decreasing level of SOD and GPx when compared with control group. The treatment with the chitosan-Pinus merkusii nanoparticle 600 mg/kg BW but not 150 and 300 mg/kg BW significantly decreased the MDA levels, caspase 3 mRNA expression, and also increased level of SOD and GPx when compared with lead acetate group. The lead acetate induced loss of the normal structure of testicular cells and necrosis, whereas treatment with chitosan-Pinus merkusii nanoparticle inhibited testicular cell necrosis. Conclusions: It can be concluded that chitosan-Pinus merkusii nanoparticle protects rat testis from oxidative damage and apoptosis caused by lead acetate, through increasing antioxidant