Mechanical Behavior and Microstructure Characterization of 3D Stitched Quartz Fibers-reinforced Silica Composites
Mechanical Behavior and Microstructure Characterization of 3D Stitched Quartz Fibers-reinforced Silica Composites作者机构:College of Material Science & Technology Nanjing University of Aeronautics and Astronautics Aviation Key Laboratory of Science and Technology for High Performance Electromagnetic Windows
出 版 物:《Journal of Wuhan University of Technology(Materials Science)》 (武汉理工大学学报(材料科学英文版))
年 卷 期:2014年第29卷第1期
页 面:5-8页
核心收录:
学科分类:08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 080502[工学-材料学]
主 题:3D stitched preform ceramic matrix composites microstructure mechanical behavior
摘 要:The mechanical properties of silica material in the monolithic form are ;far from acceptable levels. In this paper, 3D stitched quartz preform was used for the fiber reinforcement, and quartz fibers- reinforced silica composites were prepared by the silica sol-infiltration-sintering method. The density of the composite was up to 1.71 g/cm3 after 10 infiltration-sintering cycles. The flexural strength and the in-plane shear strength were 61.7 MPa and 20.3 MPa, respectively. The flexural stress-deflection curve exhibited mostly nonlinear behavior, which was different from that of monolithic ceramics. Because of the existence of the fiber in Z axis direction, shearing property between the different layers of 3D stitched composites were greatly enhanced. Toughness effect of the 3D stitched quartz preform was conspicuous. The as-fabricated composites showed non-catastronhic failure behavior resulting from weak fiber/matrix interface.