ANALYTICAL SMOOTHING EFFECT OF SOLUTION FOR THE BOUSSINESQ EQUATIONS
ANALYTICAL SMOOTHING EFFECT OF SOLUTION FOR THE BOUSSINESQ EQUATIONS作者机构:Hubei Key Laboratory of Applied Mathematics School of Mathematics and StatisticsHubei University School of Mathematics and Statistics Wuhan University Universite de Rouen CNRS UMR 6085 Laboratoire de Mathématiques
出 版 物:《Acta Mathematica Scientia》 (数学物理学报(B辑英文版))
年 卷 期:2019年第39卷第1期
页 面:165-179页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:supported partially by "The Fundamental Research Funds for Central Universities of China"
主 题:analyticity smoothing effect of solutions Boussinesq equation
摘 要:In this article, we study the analytical smoothing effect of Cauchy problem for the incompressible Boussinesq equations. Precisely, we use the Fourier method to prove that the Sobolev H^1 -solution to the incompressible Boussinesq equations in periodic domain is analytic for any positive time. So the incompressible Boussinesq equations admit exactly same smoothing effect properties of incompressible Navier-Stokes equations.