Analysis of a class of spectral pair conditions
Analysis of a class of spectral pair conditions作者机构:College of Mathematics and Information Science Shaanxi Normal University Xi'an 710062 China
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2011年第54卷第10期
页 面:2099-2110页
核心收录:
学科分类:07[理学] 08[工学] 070104[理学-应用数学] 0805[工学-材料科学与工程(可授工学、理学学位)] 080502[工学-材料学] 0701[理学-数学]
基 金:supported by the Key Project of Chinese Ministry of Education (Grant No. 108117) National Natural Science Foundation of China (Grant No. 10871123, 11171201)
主 题:iterated function system self-affine measure spectral pair compatible pair digit set
摘 要:For an expanding integer matrix M ∈ Mn(Z) and two finite digit sets D, S C Z^n with O∈ D ∩ S, we shall investigate and study the possible conditions on the spectral pair (μM,D,A(M, S)) associated with the iterated function systems {Фd(X) = M^-1(x + d)}d∈D and {φs(x) = M^*x + s}s∈S in the case when |D|= |S| = | det(M)|. Under the condition that (M^-1D, S) is a compatible pair, we obtain a series of necessary and sufficient conditions for (μM,D, A(M, S)) to be a spectral pair. These conditions include how to characterize the invariant sets A(M, S) and T(M, D) such that A(M, S) = Zn and μL(T(M, D)) = 1 which play an important role in the number system research and in the construction of Haar-type orthogonal wavelet basis respectively.