A Reduced Basis Approach for Some Weakly Stochastic Multiscale Problems
A Reduced Basis Approach for Some Weakly Stochastic Multiscale Problems作者机构:CERMICSEcole Nationale des Ponts et Chaussees6 et 8 Avenue Blaise PascalCite DescartesChamps-sur-Marne77455 Marne-La-Vallée Cedex 2France INRIA RocquencourtMICMAC teamprojectDomaine de VoluceauBP10578153 Le Chesnay CedexFrance. INRIA RocquencourtMICMAC team-projectDomaine de VoluceauBP10578153 Le Chesnay CedexFrance Laboratoire NavierEcole Nationale des Ponts et Chaussees6 et 8 Avenue Blaise PascalCite DescartesChamps-Sur-Marne77455 Marne-La-Vallée Cedex 2France.
出 版 物:《Chinese Annals of Mathematics,Series B》 (数学年刊(B辑英文版))
年 卷 期:2012年第33卷第5期
页 面:657-672页
核心收录:
学科分类:08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 080502[工学-材料学]
主 题:Reduced basis Stochastic homogenization Perturbation approach
摘 要:In this paper,a multiscale problem arising in material science is *** problem involves a random coefficient which is assumed to be a perturbation of a deterministic coefficient,in a sense made precisely in the body of the *** homogenized limit is then computed by using a perturbation *** computation requires repeatedly solving a corrector-like equation for various configurations of the *** this purpose,the reduced basis approach is employed and adapted to the specific *** authors perform numerical tests that demonstrate the efficiency of the approach.