SOME PROPERTIES OF COMMUTING AND ANTI-COMMUTING m-INVOLUTIONS
SOME PROPERTIES OF COMMUTING AND ANTI-COMMUTING m-INVOLUTIONS作者机构:9525 Compass Point Drive SouthSan DiegoCA 92126U.S.A.
出 版 物:《Acta Mathematica Scientia》 (数学物理学报(B辑英文版))
年 卷 期:2012年第32卷第2期
页 面:631-644页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0704[理学-天文学] 0701[理学-数学]
主 题:Centrosymmetric skew-centrosymmetric bisymmetric involution eigenval-ues
摘 要:We define an m-involution to be a matrix K ∈ Cn×n for which Km -= I. In this article, we investigate the class Sm (A) of m-involutions that commute with a diagonalizable matrix A E Cn×n. A number of basic properties of Sm (A) and its related subclass Sm (A, X) are given, where X is an eigenvector matrix of A. Among them, Sm (A) is shown to have a torsion group structure under matrix multiplication if A has distinct eigenvalues and has non-denumerable cardinality otherwise. The constructive definition of Sm (A, X) allows one to generate all m-involutions commuting with a matrix with distinct eigenvalues. Some related results are also given for the class S,, (A) of m-involutions that anti-commute with a matrix A ∈ Cnn×n.