咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Low-Rank Positive Approximants... 收藏

Low-Rank Positive Approximants of Symmetric Matrices

Low-Rank Positive Approximants of Symmetric Matrices

作     者:Achiya Dax 

作者机构:Hydrological Service Jerusalem Israel 

出 版 物:《Advances in Linear Algebra & Matrix Theory》 (线性代数与矩阵理论研究进展(英文))

年 卷 期:2014年第4卷第3期

页      面:172-185页

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

主  题:Low-Rank Positive Approximants Unitarily Invariant Matrix Norms 

摘      要:Given a symmetric matrix X, we consider the problem of finding a low-rank positive approximant of X. That is, a symmetric positive semidefinite matrix, S, whose rank is smaller than a given positive integer, , which is nearest to X in a certain matrix norm. The problem is first solved with regard to four common norms: The Frobenius norm, the Schatten p-norm, the trace norm, and the spectral norm. Then the solution is extended to any unitarily invariant matrix norm. The proof is based on a subtle combination of Ky Fan dominance theorem, a modified pinching principle, and Mirsky minimum-norm theorem.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分