咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >A machine learning approach to... 收藏

A machine learning approach to model solute grain boundary segregation

作     者:Liam Huber Raheleh Hadian Blazej Grabowski Jörg Neugebauer 

作者机构:Max-Planck-Institut für Eisenforschung GmbHD-40237 DüsseldorfGermany 

出 版 物:《npj Computational Materials》 (计算材料学(英文))

年 卷 期:2018年第4卷第1期

页      面:130-137页

核心收录:

学科分类:08[工学] 080502[工学-材料学] 0805[工学-材料科学与工程(可授工学、理学学位)] 

基  金:This project has received funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation programme(Grant Agreement No.639211) 

主  题:grain solute boundary 

摘      要:Even minute amounts of one solute atom per one million bulk atoms may give rise to qualitative changes in the mechanical response and fracture resistance of modern structural *** changes are commonly related to enrichment by several orders of magnitude of the solutes at structural defects in the host *** underlying concept—segregation—is thus fundamental in materials *** include it in modern strategies of materials design,accurate and realistic computational modelling tools are ***,the enormous number of defect configurations as well as sites solutes can occupy requires models which rely on severe *** the present study we combine a high-throughput study containing more than 1 million data points with machine learning to derive a computationally highly efficient framework which opens the opportunity to model this important mechanism on a routine basis.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分