咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Least Squares Hermitian Proble... 收藏

Least Squares Hermitian Problem of Matrix Equation (<i>AXB</i>, <i>CXD</i>) = (<i>E</i>, <i>F</i>) Associated with Indeterminate Admittance Matrices

Least Squares Hermitian Problem of Matrix Equation (<i>AXB</i>, <i>CXD</i>) = (<i>E</i>, <i>F</i>) Associated with Indeterminate Admittance Matrices

作     者:Yanfang Liang Shifang Yuan Yong Tian Mingzhao Li 

作者机构:School of Mathematics and Computational Science Wuyi University Jiangmen China KaiQiao Middle School in KaiPing City Jiangmen China 

出 版 物:《Journal of Applied Mathematics and Physics》 (应用数学与应用物理(英文))

年 卷 期:2018年第6卷第6期

页      面:1199-1214页

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

主  题:Matrix Equation Least Squares Solution Least Norm Solution Hermitian Indeterminate Admittance Matrices 

摘      要:For A∈CmΧn, if the sum of the elements in each row and the sum of the elements in each column are both equal to 0, then A is called an indeterminate admittance matrix. If A is an indeterminate admittance matrix and a Hermitian matrix, then A is called a Hermitian indeterminate admittance matrix. In this paper, we provide two methods to study the least squares Hermitian indeterminate admittance problem of complex matrix equation (AXB,CXD)=(E,F), and give the explicit expressions of least squares Hermitian indeterminate admittance solution with the least norm in each method. We mainly adopt the Moore-Penrose generalized inverse and Kronecker product in Method I and a matrix-vector product in Method II, respectively.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分