Temperature variability caused by internal tides in the coastal waters of east coast of Peninsular Malaysia
Temperature variability caused by internal tides in the coastal waters of east coast of Peninsular Malaysia作者机构:Institute of Oceanography and Environment Universiti Malaysia Terengganu
出 版 物:《Acta Oceanologica Sinica》 (海洋学报(英文版))
年 卷 期:2019年第38卷第1期
页 面:22-31页
核心收录:
学科分类:07[理学]
基 金:The Higher Institutional Centre of Excellent Universiti Malaysia Terengganu under contract No.TJ66928 the Malaysia Coastal Observation Network Project under the Institute of Oceanography and Environment,Universiti Malaysia Terengganu of Malaysia
主 题:east coast of Peninsular Malaysia South China Sea barotropic tidal currents internal tides nearbottom temperature coastal shelf sea
摘 要:The effects of tidal currents(i.e., barotropic and internal tides) are important in the biogeochemistry of a coastal shelf sea. The high-frequency of currents and near-bottom temperatures collected in three consecutive southwest monsoon seasons(May, June, July and August of 2013 until 2015) is presented to reveal the role of the tidal currents to the temperature variability in the coastal shelf sea of the east coast of Peninsular Malaysia(ECPM),south of the South China Sea(SCS). The results of a spectral density and harmonic analysis demonstrate that the near-bottom temperature variability and the tidal currents are influenced by diurnal(O_1 and K_1) and semidiurnal(M_2) tidal currents. The spectral density of residual currents(detided data) at 5, 10 and 16 m depth also shows significant peaks at the diurnal tidal frequency(K_1) and small peaks at the semidiurnal tidal frequency(M_2)indicating the existence of internal tides. The result of the horizontal kinetic energy(HKE) shows a strong intermittent energy of internal tides in the ECPM with the strongest energy is found at 16 m depth during a sporadic cooling event in June and July. A high horizontal cross-shore heat flux(16 m) also indicates strong intrusions of cooler water into the ECPM in June and July. During the short duration of cold pulse water observed in June and July, a cross-wavelet analysis also reveals the strong relationship between the near-bottom temperatures and the internal tidal currents at the diurnal tidal frequency. The intrusion of this cooler water is probably related to the monsoon-induced upwelling in June. It is loosely interpreted that the interaction between the strong barotropic tides and the steep slope in the central basin of the SCS under the stratified condition in southwest monsoon has generated these internal tides. The dissipation of internal tides from the slope area probably has driven the cold-upwelled water into the ECPM coastal shelf sea when the upwelling intensity is th