Relative integral bases of abelian q-fields
Relative integral bases of abelian q-fields作者机构:Department of Mathematics Tsinghua University Beijing 100084 China
出 版 物:《Chinese Science Bulletin》 (科学通报(英文版))
年 卷 期:1996年第41卷第13期
页 面:1065-1068页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:Project supported by the National Natural Science Foundation of China
主 题:number field abelian field relative integral basis character group.
摘 要:Let O_L and O_K denote the rings of integers in the algebraic number fields L and K, respectively, where K is a subfield of L. If O_L is a free O_K-module, then L/K is said to have a relative integral basis. Artin and Frhlich raised and studied the problem of existence of a relative integral basis for a number field L. The nroblem was treated