咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Subgroup Discovery Algorithms:... 收藏

Subgroup Discovery Algorithms: A Survey and Empirical Evaluation

Subgroup Discovery Algorithms: A Survey and Empirical Evaluation

作     者:Sumyea Helal 

作者机构:School of Information Technology and Mathematical Sciences University of South Australia Adelaide SA5001 Australia 

出 版 物:《Journal of Computer Science & Technology》 (计算机科学技术学报(英文版))

年 卷 期:2016年第31卷第3期

页      面:561-576页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 0808[工学-电气工程] 07[理学] 070104[理学-应用数学] 0835[工学-软件工程] 0701[理学-数学] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:subgroup discovery searching pruning measure evaluation 

摘      要:Subgroup discovery is a data mining technique that discovers interesting associations among different variables with respect to a property of interest. Existing subgroup discovery methods employ different strategies for searching, pruning and ranking subgroups. It is very crucial to learn which features of a subgroup discovery algorithm should be considered for generating quality subgroups. In this regard, a number of reviews have been conducted on subgroup discovery. Although they provide a broad overview on some popular subgroup discovery methods, they employ few datasets and measures for subgroup evaluation. In the light of the existing measures, the subgroups cannot be appraised from all perspectives. Our work performs an extensive analysis on some popular subgroup discovery methods by using a wide range of datasets and by defining new measures for subgroup evaluation. The analysis result will help with understanding the major subgroup discovery methods, uncovering the gaps for further improvement and selecting the suitable category of algorithms for specific application domains.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分