Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: A review
Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: A review作者机构:Institute of Engineering Thermodynamics German Aerospace Center (DLR) 70569 Stuttgart Germany Institute of Engineering Thermodynamics German Aerospace Center (DLR) 51147 Cologne Germany
出 版 物:《Frontiers of Chemical Science and Engineering》 (化学科学与工程前沿(英文版))
年 卷 期:2018年第12卷第3期
页 面:564-576页
核心收录:
学科分类:081702[工学-化学工艺] 08[工学] 0817[工学-化学工程与技术] 080502[工学-材料学] 0805[工学-材料科学与工程(可授工学、理学学位)]
基 金:funded by German Academic Exchange Service (DAAD) German Aerospace Center (DLR)
主 题:corrosion mechanisms impurities metallic corrosion salt purification electrochemical techniques
摘 要:Recently, more and more attention is paid on applications of molten chlorides in concentrated solar power (CSP) plants as high-temperature thermal energy storage (TES) and heat transfer fluid (HTF) materials due to their high thermal stability limits and low prices, compared to the commercial TES/HTF materials in CSP- nitrate salt mixtures. A higher TES/HTF operating temperature leads to higher efficiency of thermal to electrical energy conversion of the power block in CSP, however causes additional challenges, particularly increased corrosiveness of metallic alloys used as contain- ers and structural materials. Thus, it is essential to study corrosion behaviors and mechanisms of metallic alloys in molten chlorides at operating temperatures (500-800℃) for realizing the commercial application of molten chlorides in CSE The results of studies on hot corrosion of metallic alloys in molten chlorides are reviewed to understand their corrosion behaviors and mechanisms under various conditions (e.g., temperature, atmosphere). Emphasis has also been given on salt purification to reduce corrosive impurities in molten chlorides and development of electrochemical techniques to in-situ monitor corrosive impurities in molten chlorides, in order to efficiently control corrosion rates of metallic alloys in molten chlorides to meet the requirements of industrial applications.