Inverted List Kinetic Monte Carlo with Rejection Applied to Directed Self-Assembly of Epitaxial Growth
作者机构:Department of MathematicsUniversity of TennesseeKnoxvilleTennessee 37996USA Department of Mathematics and Institute for Pure and Applied MathematicsUniversity of California in Los AngelesLos AngelesCalifornia 90095USA
出 版 物:《Communications in Computational Physics》 (计算物理通讯(英文))
年 卷 期:2009年第6卷第8期
页 面:553-564页
核心收录:
学科分类:0809[工学-电子科学与技术(可授工学、理学学位)] 07[理学] 070205[理学-凝聚态物理] 08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 080502[工学-材料学] 0702[理学-物理学]
基 金:MAS was supported by a grant from DOE(DE-FG02-03ER2558) TPS was supported by grants from DOE(DE-FG02-03ER2558)and NSF(NSF-DMS-0707443)
主 题:Epitaxial growth kinetic Monte Carlo binary-tree search
摘 要:We study the growth of epitaxial thin films on pre-patterned substrates that influence the surface diffusion of subsequently deposited material using a kinetic Monte Carlo algorithm that combines the use of inverted lists with *** resulting algorithm is well adapted to systems with spatially heterogeneous hopping *** evaluate the algorithm’s performance we compare it with an efficient,binary-tree based algorithm.A key finding is that the relative performance of the inverted list algorithm improves with increasing system size.