咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Effect of Rhizobacterium Rhodo... 收藏

Effect of Rhizobacterium Rhodopseudomonas palustris Inoculation on Stevia rebaudiana Plant Growth and Soil Microbial Community

Effect of Rhizobacterium Rhodopseudomonas palustris Inoculation on Stevia rebaudiana Plant Growth and Soil Microbial Community

作     者:XU Jiangbing FENG Youzhi WANG Yanling LIN Xiangui 

作者机构:International Center for EcologyMeteorologyand Environment (IceMe)School of Applied MeteorologyNanjing University of Information Science and Technology State Key Laboratory of Soil and Sustainable AgricultureInstitute of Soil ScienceChinese Academy of Sciences 

出 版 物:《Pedosphere》 (土壤圈(英文版))

年 卷 期:2018年第28卷第5期

页      面:793-803页

核心收录:

学科分类:07[理学] 09[农学] 0818[工学-地质资源与地质工程] 0903[农学-农业资源与环境] 0901[农学-作物学] 0713[理学-生态学] 

基  金:supported by the National Natural Science Foundation of China (No. 41501264) the Natural Science Foundation of Jiangsu Province, China (No. BK20140991) the Research Fund of State Key Laboratory of Soil and Sustainable Agriculture, Nanjing Institute of Soil Science, Chinese Academy of Sciences (No. Y412201441) 

主  题:土壤微生物 植物生长 接种 社区 土壤细菌 玷污 土壤酶 脱氢酶 

摘      要:There is an increasing concern that the continuous use of chemical fertilizers might lead to harmful effects on soil ecosystem.Accordingly, a biocompatible approach involving inoculation of beneficial microorganisms is presented to promote plant growth and simultaneously minimize the negative effect of chemical fertilizers. In this study, Rhodopseudomonas palustris, a plant growth-promoting rhizobacterium(PGPR), was inoculated into both fertilized and unfertilized soils to assess its influence on Stevia rebaudiana plant growth and microbial community in rhizosphere soils in a 122-d field experiment. Soil enzyme assays(dehydrogenase, urease, invertase, and phosphomonoesterase), real-time quantitative polymerase chain reaction(RT-_qPCR), and a high-throughput sequencing technique were employed to determine the microbial activity and characterize the bacterial community. Results showed that the R.palustris inoculation did not significantly influence Stevia yields and root biomass in either the fertilized or unfertilized soil. Chemical fertilization had strong negative effects on soil bacterial community properties, especially on dehydrogenase and urease activities.However, R. palustris inoculation counteracted the effect of chemical fertilizer on dehydrogenase and urease activities, and increased the abundances of some bacterial lineages(including Bacteroidia, Nitrospirae, Planctomycetacia, Myxococcales, and Legionellales). In contrast, inoculation into the unfertilized soil did not significantly change the soil enzyme activities or the soil bacterial community structure. For both the fertilized and unfertilized soils, R. palustris inoculation decreased the relative abundances of some bacterial lineages possessing photosynthetic ability, such as Cyanobacteria, Rhodobacter, Sphingomonadales, and Burkholderiales. Taken together, our observations stress the potential utilization of R. palustris as PGPR in agriculture, which might further ameliorate the soil microbial properties in the long run.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分