咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Anti-commutative Grbner-Shirs... 收藏

Anti-commutative Grbner-Shirshov basis of a free Lie algebra

Anti-commutative Grbner-Shirshov basis of a free Lie algebra

作     者:BOKUT L. A. 

作者机构:School of Mathematical Sciences South China Normal University Sobolev Institute of Mathematics Russian Academy of Sciences Siberian BranchNovosibirsk 630090 Russia 

出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))

年 卷 期:2009年第52卷第2期

页      面:244-253页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:supported by the grant LSS (Grant No. 344.2008.1) the SB RAS Integration Grant (GrantNo. 2006.1.9) (Russia) National Natural Science Foundation of China (Grant No. 10771077) Natural Science Foundation of Guangdong Province (Grant No. 06025062) 

主  题:Lie algebra anti-commutative algebra Hall words Grbner-Shirshov basis 

摘      要:The concept of Hall words was first introduced by P. Hall in 1933 in his investigation on groups of prime power order. Then M. Hall in 1950 showed that the Hall words form a basis of a free Lie algebra by using direct construction, that is, first he started with a linear space spanned by Hall words, then defined the Lie product of Hall words and finally checked that the product yields the Lie identities. In this paper, we give a Grbner-Shirshov basis for a free Lie algebra. As an application, by using the Composition-Diamond lemma established by Shirshov in 1962 for free anti-commutative (non-associative) algebras, we provide another method different from that of M. Hall to construct a basis of a free Lie algebra.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分