咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Characterization of a PDR type... 收藏

Characterization of a PDR type ABC transporter gene from wheat (Triticum aestivum L.)

Characterization of a PDR type ABC transporter gene from wheat (Triticum aestivum L.)

作     者:SHANG Yi XIAO Jin MA LuLin WANG HaiYan QI ZengJun CHEN PeiDu LIU DaJun WANG XiuE 

作者机构:State Key Laboratory of Crop Genetics and Germplasm Enhancement Cytogenetics Institute Nanjing Agricultural UniversityNanjing 210095 China Institute of Crop Research and Nuclear Technique Utilization Zhejiang Academy of Agricultural Science Hangzhou 310021 China 

出 版 物:《Chinese Science Bulletin》 (CHINESE SCIENCE BULLETIN)

年 卷 期:2009年第54卷第18期

页      面:3249-3257页

核心收录:

学科分类:09[农学] 0901[农学-作物学] 

基  金:Supported by the National Natural Science Foundation of China (Grant No. 30330380) Programme of Introducing Talents of Discipline to Universities (Grant No. B08025) Chinese High Technology Research and Development Program of China (Grant No. 2006AA10Z1F6) Natural Science Foundation of Jiangsu Province (Grant No. BK2006720) Important National Science & Technology Specific Projects of Transgenic Research (Grant No. 2009Zx08002-001B) McKnight Foundation CCRP Program 

主  题:小麦 多样性 PDR ABC 

摘      要:DON, as a virulence factor, plays an important role in the infection of Fusarium graminearum in wheat. The infection ability of F. graminearum depends on its capacity of producing DON. The production of DON by F. graminearum is significantly decreased in the wheat varieties with scab resistance. In this study, GeneChip analysis indicated that an EST encoding an ATP-binding cassette (ABC) transporter was up-regulated by 45 times in a wheat landrace Wangshuibai, which is resistant to DON accumulation. A pair of EST-derived primers were designed based on the EST sequence, and a clone was then isolated from a wheat genomic DNA TAC library. The TAC clone was sequenced using chromosome walking and gene prediction was conducted using Softberry. A cDNA clone of this gene was subsequently isolated from Wangshuibai induced by DON using gene-specific primers designed according to the untranslated sequence of the gene. The genome size of the gene is 7377 bp, consisting of 19 exons with coding sequences of 4308 bp. It encodes a protein with 1435 amino acid residues and the calculated molecular weight is about 161 kD. BLAST analysis indicated that the gene may belong to pleiotropic drug resistance (PDR) sub-family, and hence designated as TaPDR1 (Triticum aestivum pleiotropic drug resistance). TaPDR1 was located on chromosome 5A of wheat using nullisomic-tetrasomic lines of Chinese Spring. TaPDR1 was up-regulated by induction of both DON and F. graminearum. Expression patterns of TaPDR1 were different in wild-type Wangshuibai and the fast-neutron induced Wangshuibai mutant lacking FHB1, a major QTL of FHB resistance and DON resistance in chromosome arm 3BS. These results suggested that TaPDR1 might be a candidate gene responsible for DON ac-cumulation resistance. The expression profile showed that TaPDR1 expression was neither induced by hormones typically involved in biotic stress, such as JA and SA, nor by abiotic stresses, such as heat, cold, wounding and NaCl. However, TaPDR1

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分