HOMOCLINIC ORBITS FOR LAGRANGIAN SYSTEMS
HOMOCLINIC ORBITS FOR LAGRANGIAN SYSTEMS作者机构:ZHEJIANG UNIVDEPT MATHHANGZHOU 310027PEOPLES R CHINA
出 版 物:《Chinese Annals of Mathematics,Series B》 (数学年刊(B辑英文版))
年 卷 期:1996年第17卷第2期
页 面:245-256页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:Project supported by the National Natural Science Foundation of China and the Zhejiang Natural Science Foundation
主 题:Lagrangian systerm Superquadratic growth Concentration-compactness Minimax argument
摘 要:The existence of at least two homoclinic orbits for Lagrangian system (LS) is proved, where the Lagrangian L(t,x,y) =1/2∑aij(x)yiyj-V(t, x), in which the potential V(t,x) is globally surperquadratic in x and T-periodic in t. The Concentration-Compactness Lemma and Mini- max argument are used to prove the existences.