咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >HOMOCLINIC ORBITS FOR LAGRANGI... 收藏

HOMOCLINIC ORBITS FOR LAGRANGIAN SYSTEMS

HOMOCLINIC ORBITS FOR LAGRANGIAN SYSTEMS

作     者:Wu SHAOPING Departmentof Mathematics, Zhejiang University, Hangzhou, 310027, China. Wu SHAOPING Departmentof Mathematics, Zhejiang University, Hangzhou, 310027, China.

作者机构:ZHEJIANG UNIVDEPT MATHHANGZHOU 310027PEOPLES R CHINA 

出 版 物:《Chinese Annals of Mathematics,Series B》 (数学年刊(B辑英文版))

年 卷 期:1996年第17卷第2期

页      面:245-256页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:Project supported by the National Natural Science Foundation of China and the Zhejiang Natural Science Foundation 

主  题:Lagrangian systerm Superquadratic growth Concentration-compactness Minimax argument 

摘      要:The existence of at least two homoclinic orbits for Lagrangian system (LS) is proved, where the Lagrangian L(t,x,y) =1/2∑aij(x)yiyj-V(t, x), in which the potential V(t,x) is globally surperquadratic in x and T-periodic in t. The Concentration-Compactness Lemma and Mini- max argument are used to prove the existences.

读者评论 与其他读者分享你的观点