Microstructure and corrosion behavior of Al3Ti/ADC12 composite modified with Sr
Microstructure and corrosion behavior of Al_3Ti/ADC12 composite modified with Sr作者机构:School of Mechanical and Electrical EngineeringNanchang UniversityNanchang 330031China
出 版 物:《International Journal of Minerals,Metallurgy and Materials》 (矿物冶金与材料学报(英文版))
年 卷 期:2018年第25卷第7期
页 面:840-848页
核心收录:
学科分类:08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 080502[工学-材料学]
基 金:financially supported by the National Natural Science Foundation of China(No.51364035) the Natural Science Foundation of Jiangxi Province(No.20171BAB206034)
主 题:Sr modification A13Ti/ADC 12 composite microstxucture corrosion behavior
摘 要:In this study, we investigated the effect of the addition of Sr (0wt%, 0. lwt%, 0.2wt%, and 0.3wt%) on the microstaalcture and cor- rosion behavior of A13Ti/ADC12 composite by optical microscopy, X-ray diffraction, sca^lning electron microscopy, mid energy diffraction spectroscopy. The results reveal that the c^-A1 phases were nearly spherical mid 40 gin in size and that the eutectic Si phases became round in the composite when the Sr content reached 0.2wt%. The A13Ti paxticles were distributed uniformly at the grain boundary. The results of the corrosion examination reveal that the A13Ti/ADC12 composite exhibited a minimum corrosion rate of 0.081 g.m 2,hl for an Sr content of 0.2wt%, which is two thirds of that of umnodified composite (0.134 g.m4.h 1). This improved corrosion resistaalce was due to galvamc cor- rosion, which resulted from the low area ratio of the cathode to anode regions. This caused a low-density corrosion current in the composite, thereby yielding optimum corrosion resistmlce.