A Finite Volume Unstructured Mesh Method for Fractional-in-space Allen-Cahn Equation
有限体积方法非结构网格方法解分数阶Allen-Cahn程(英文)作者机构:School of Mathematics and Statistics Henan University Kaifeng475004 China Institute of Applied Mathematics Henan University Kaifeng 475004 China Laboratory of Data Analysis Technology Henan University Kaifeng 475004 China School of Mathematical Sciences Queensland Universityof Technology GPO Box 2434 Brisbane Qld. 4001 Australia
出 版 物:《Chinese Quarterly Journal of Mathematics》 (数学季刊(英文版))
年 卷 期:2017年第32卷第4期
页 面:345-354页
学科分类:07[理学] 070102[理学-计算数学] 0701[理学-数学]
基 金:Supported by the National Natural Science Foundation of China(11105040,61773153) Supported by the Foundation of Henan Educational Committee(18B110003,15A110015) Supported by the Excellent Young Scientific Talents Cultivation Foundation of Henan University(yqpy20140037) Supported by the Science and Technology Program of Henan Province(162300410061)
主 题:fractional-in-space Allen-Cahn equation finite volume method matrix transfertechnique preconditioned Lanczos method
摘 要:Fractional-in-space Allen-Cahn equation containing a very strong nonlinear source term and small perturbation shows metastability and a quartic double well *** a finite volume unstructured triangular mesh method, the present paper solves the twodimensional fractional-in-space Allen-Cahn equation with homogeneous Neumann boundary condition on different irregular domains. The efficiency of the method is presented through numerical computation of the two-dimensional fractional-in-space Allen-Cahn equation on different domains.