基于双通道LSTM模型的用户性别分类方法研究
User Gender Classification with Dual-channel LSTM作者机构:苏州大学计算机科学与技术学院江苏苏州215006
出 版 物:《计算机科学》 (Computer Science)
年 卷 期:2018年第45卷第2期
页 面:121-124页
学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
摘 要:微博用户性别分类旨在根据用户信息进行用户性别的识别。目前性别分类的相关研究主要针对单一类型的特征(文本特征或者社交特征)进行性别分类。与以往研究不同,文中提出了一种双通道LSTM(Long-Short Term Memory)模型,以充分结合文本特征(用户发表的微博文本)和社交特征(用户关注者的信息)进行用户性别分类方法的研究。首先,利用单通道LSTM模型分别学习两组文本特征,得到两种特征表示;然后,在神经网络中加入Merge层,结合两种特征表示进行集成学习,以充分学习文本特征和社交特征之间的联系。实验结果表明,相对于传统的分类算法,双通道LSTM模型分类算法能够获得更好的用户性别分类效果。