Construction of maximally localized Wannier functions
Construction of maximally localized Wannier functions作者机构:International Center for Quantum Materials School of Physics Peking University Beijing 100871 China Institute of Applied Physics and Computational Mathematics Beijing 100088 China Collaborative Innovation Center of Quantum Matter Beijing 100871 China Wilczek Quantum Center College of Science Zhejiang University of Technology Hangzhou 310014 China Synergetic Innovation Center for Quantum Effects and Applications (SICQEA) Hunan Normal University Changsha 410081 China
出 版 物:《Frontiers of physics》 (物理学前沿(英文版))
年 卷 期:2017年第12卷第5期
页 面:51-55页
核心收录:
学科分类:07[理学] 0809[工学-电子科学与技术(可授工学、理学学位)] 081203[工学-计算机应用技术] 08[工学] 070205[理学-凝聚态物理] 0805[工学-材料科学与工程(可授工学、理学学位)] 080502[工学-材料学] 0835[工学-软件工程] 0704[理学-天文学] 0702[理学-物理学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:Acknowledgements We thank Ji Feng and Xianqing Lin for helpful discussion. This work was supported by the National Basic Research Program of China (Grants No. 2013CB921903 and No. 2012CB921300) and the National Natural Science Foundation of China (Grants Nos. 11274024 11334001 and 11429402)
主 题:Wannier function random potential~ cold atomic gases
摘 要:We present a general method for constructing maximally localized Wannier functions. It consists of three steps: (i) picking a localized trial wave function, (ii) performing a full band projection, and (iii) orthonormalizing with the LSwdin method. Our method is capable of producing maximally localized Wannier functions without further minimization, and it can be applied straightforwardly to random potentials without using supercells. The effectiveness of our method is demonstrated for both simple bands and composite bands.