When a smooth self-map of a semi-simple Lie group can realize the least number of periodic points
When a smooth self-map of a semi-simple Lie group can realize the least number of periodic points作者机构:Institute of Applications of Informatics and MathematicsWarsaw University of Life Sciences(SGGW)Warsaw 00-757Poland
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2017年第60卷第9期
页 面:1579-1590页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:supported by the National Science Center Poland(Grant No.UMO2014/15/B/ST1/01710)
主 题:periodic points Nielsen number fixed point index smooth maps Lie group
摘 要:There are two algebraic lower bounds of the number of n-periodic points of a self-map f : M →4 M of a compact smooth manifold of dimension at least 3: NFn(f) = min{#Fix(gn);g - f; g continuous} and NJDn(f) = min{#Fix(gn);g - f; g smooth}. In general, NJDn(f) may be much greater than NFn(f). We show that for a self-map of a semi-simple Lie group, inducing the identity fundamental group homomorphism, the equality NFn(f) = NJDn(f) holds for all n →← all eigenvalues of a quotient cohomology homomorphism induced by f have moduli ≤ 1.