咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >When a smooth self-map of a se... 收藏

When a smooth self-map of a semi-simple Lie group can realize the least number of periodic points

When a smooth self-map of a semi-simple Lie group can realize the least number of periodic points

作     者:JEZIERSKI Jerzy 

作者机构:Institute of Applications of Informatics and MathematicsWarsaw University of Life Sciences(SGGW)Warsaw 00-757Poland 

出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))

年 卷 期:2017年第60卷第9期

页      面:1579-1590页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:supported by the National Science Center Poland(Grant No.UMO2014/15/B/ST1/01710) 

主  题:periodic points Nielsen number fixed point index smooth maps Lie group 

摘      要:There are two algebraic lower bounds of the number of n-periodic points of a self-map f : M →4 M of a compact smooth manifold of dimension at least 3: NFn(f) = min{#Fix(gn);g - f; g continuous} and NJDn(f) = min{#Fix(gn);g - f; g smooth}. In general, NJDn(f) may be much greater than NFn(f). We show that for a self-map of a semi-simple Lie group, inducing the identity fundamental group homomorphism, the equality NFn(f) = NJDn(f) holds for all n →← all eigenvalues of a quotient cohomology homomorphism induced by f have moduli ≤ 1.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分